Skip to content
FlowBIM
  • Home
  • BIM courses
  • droneHOW
  • July 5, 2017July 16, 2019
  • by Raido Puust

My general teaching philosophy rely on the assumptions that classical lecture should be used as a bonus and a motivating communication between a teacher and a student. To support this workflow and basically eliminating so called classical lecture component, a peer instruction methodology can be applied. For that, integrated course design is used in all my main subjects where I’m responsible for the full course delivery (including theory/lectures and practice/homework). The concept of the peer instruction is to engage students during various activities during the class (including both – contact hours, as well as e-learning). Students should apply the core concepts that they have read, studied prior to a class and also be able to explain those concepts to their fellow students. Collaboration is a key workflow that students face when they step into real world. And course itself should develop various skills in its learners. Therefore I do use various assessment methods throughout the course life-cycle, including each and every student in the learning process from the very beginning. It is just the opposite of so called common lectures where students should ask informal questions during a lecture. The downside is that only couple of students are activated who are highly motivated. To support peer instruction philosophy, I have design my courses as e-learning courses, where students are not just getting learning materials but they have to be involved in the learning process topic by topic. A general design about my main courses is given in the following image.

From the image above, various learning activities are involved during the course. Each student is able to move in his/her own pace but learning outcomes are integrated with continuous feedback/assessment components and/or activities. An example of this is that each student should be able to ask constructive questions about course main topics after each and every module (module equals to subtopic) as well as answer to other student question. Questions/answers are evaluated by the teacher, as well as any other homework that is given to student, should be finished correctly enabling her/him to learn from her/his mistakes. The goal I’m using that methodology is to engage students and develop their various skills throughout the course, including: being able to ask constructive questions (forum), develop the courage to support/answer fellow student question (forums), problem solving skills (real world example as an assessment), writing skills (essay) and group work/collaboration/presentation skills (project). Each of those learning/studying component and therefore student workflow is actively supported by myself as a teacher. It is not about answering to all of the forum posts, but about supporting students that they do not feel alone in the course. I have been using such methodologies especially with more recent subjects (BIM subjects, water pipelines and modelling) and always seeing an improvement through student’s feedback. It is important that a teacher gathers student’s feedback and take that into account as smoothly as possible to develop the course further.

One key component while developing course materials is that students are different and therefore I prepare learning materials for various types of students. In general it means that I duplicate course materials in various formats. For example giving a module theory and/or practical component as a full step-by-step text material but also as a video (edited, so that unnecessary pauses/mistakes are removed). As such, students can choose which material is more suitable for them. Statistically (while asking student’s feedback at the end of course) I get very supportive feedback for my methods. Altogether I can conclude that about 70% of students prefer video based learning material and 30% step-by-step text materials. Of course both materials can be also used at different time moments. But it clearly states that I can’t remove one or the other from my course materials (for example leaving only video based learning materials).

My goal during a course is to develop various skills. As mentioned before I encourage students to ask questions what moved them or confused during self-learning process (module by module basis). Because those components can be easily made as must dos during a learning process and evaluated against question’s / answer’s constructiveness, I have seen that quite many students are not able to ask questions about learning subject. On the other side, it is an important aspect to know and learn, because real life is expecting that people are active and collaborative. So, this brings us back to a so called classical lecture, where couple of people are engaged and keen on to ask questions because they can do it. But we can’t evenly say about other people (who do not ask questions) that they do not want to ask. Perhaps they need to be taught through a learning process itself to ask questions. A successful e-learning can enhance such skills development.

During a course delivery (contact hours, e-learning) I’m passionate to offer modern ways of learning. Therefore I incorporate tools that are used by real life practitioners as well as I have found to add value into learning process through my own learning process. For a general e-learning and course delivery platform I use well known Moodle platform. Moodle as a massive open online course (MOOC) platform has great and modern tools and possibilities to engage students during their participation. While for theoretical background I’m mostly using peer instruction method (students should actively participate asking questions and giving answers to other fellow students). Based on the type of questions that dominate in forums I can make conclusion in where I should concentrate more during a contact hour. From practical side I use different methods to help building up student’s ability to apply her/his understandings. Those include problem solving tasks in form of online tests as well as presenting results through industry standard tools as homework. All those exercises are individually evaluated and personal feedback given with suggestions to accomplish learning goals if some mistakes are found and student needs to represent the result/homework. All those individual and collaborative (participating in forums) skills are connected into group based project study that comes from the real life. In here students practice working in teams as well as finding answers together as a team, sharing responsibilities.

My general course planning is built on top of integrated course design methodology. This methodology should connect learning goals, teaching and learning activities as well as feedback and assessment into one ecosystem where those components relate with each other. The question that comes up into my mind when designing a course can be asked like so, “What could be ‘that thing’ that I hope students have learned from my course that is still there and has been a great value for their career, even after several years later from the course ending?” Of course the answer lies behind learning goals and what are the methods to achieve those goals. If we can take the real world example that is current need or focus in work sector today and build our course around it, finding all the sub-tasks (goals) that are needed to achieve the major goal – we help to remember and most importantly connect the university subject with real things and industry needs.

An example of this is the most recent course that I have developed those principles in mind – BIM for infrastructure (InfraBIM) basics. I have taken a real world example in where BIM process is explained, and applied to help design teams to stay connected, find problems in the design as early as possible (before the real construction starts) and keep the construction itself in schedule or see possible resource deficiencies on-time. To fulfill the major goal, various sub goals should be successfully learned/studied.

During the course my goal is to keep an eye on how students’ progress and if they are struggling somewhere in between, helping them to get on track and encourage ask questions from where they get stuck. After the course I’m also keen on doing learning analytics about my course participants. My goals here is to understand the behavior of different student groups (for example students who come from study programs vs students who are participating through open university program). Common conclusions can be used to avoid typical issues next semester. For example, it is clear that distant learners who do not have a possibility to get support directly from contact hour, can get in trouble because they do need some more active hours with direct guidance. To avoid such cases in the future, contact hours for distant learners should be especially gathered to the beginning of semester and not splitted or scatted throughout the semester. Such conclusions are coming from learning analytics and seeing the clear indicator that day-time students (possibility to participate in contact hours more often) can start the learning process quicker. I have analysed two main BIM subjects in where I’m responsible. Please note that both courses are open BIM courses and more information (including the layout and content of the course) can be easily seen once clicked on the course webpage.

Example 1: Building information modelling basics (BIM I)

General information about the course:

  • 6 EAP (16 weeks)
  • Concentrates onto vertical BIM side (buildings)
  • Covers cycles of BIM like preliminary design, energy analysis, design, construction (4D/5D), collaboration
  • Products used, include: Autodesk FormIt, Autodesk Revit, Autodesk Navisworks, 3ds Max, Autodesk Viewer
  • Assessment/homework: Self-assessment tests (graded), preliminary house project (200 m², 2 story)

Course starts with a general introduction and introductory lectures. Because course is designed as an e-learning course, most of the work during semester is with peer instruction, where a teacher is giving continuous feedback individually as well as with general forum/video posts to the course participants. Additional contact hours are based on questions/topics where students need more help. Course project is individual and reflects the knowledge from course sub-topics. Bonus assessments can give special points before the course completion. Course ends with summarized contact hour. Based on students continuous activity recordings and feedback, course analytics is carried out. Some statistics is given in the sub-section. In Spring 2017 the course belonged to elective courses list but the level of interest was moderately positive (total number of registrants: 56 students).

Course learning analytics based on two different study groups (open university, study program):

Open university students
Study program students

Feedback for the course given anonymously  (Study Information System, Moodle course feedback):

Study Information System, spring 2019

The following graph shows average marks for the questions answered by students in Spring 2019 (in scale 1 – 5, where 5  is excellent)

The list of questions is:

  1. The methods (teaching methods and aids) used were relevant
  2. The lecturer was well-disposed (polite, kind, attentive, etc.) towards the students
  3. I found the organisation of the subject easy to comprehend
  4. The study materials were well-suited for acquiring the subject
  5. Stationary study took place according to schedule
  6. The volume of independent work was reasonable
  7. The lecturer made sure the students were not cheating
  8. The evaluation was based on the listed evaluation criteria*
  9. Completing the course resulted in the learning outcomes* presented in the course
  10. description for me
  11. All in all, I was satisfied with the lecturer

There is some correlation in between Q.4 and Q.6. We can see that once you have to learn by yourself, then the amount of learning materials is very important. Generally the mark “4” is not bad, but a clear indicator for the teacher that some improvement can be made. Q.4 is tied with Q.6 because the amount of independent work really depends on how you can develop yours skills and manage with the amount of homework. As an improvement or action plan for those a bit lower evaluation points, course materials are added and re-organized to improve the content delivery. Additional feedback can be found from Appendix A.

Example 2: BIM for infrastructure (InfraBIM) basics

General information about the course:

  • 6 EAP (16 weeks)
  • Concentrates onto horizontal BIM side (infrastructure, roads, etc.)
  • Covers cycles of BIM like preliminary design, cost calculations for preliminary design alternatives, design, virtual design and construction (4D/5D), collaboration
  • Products used, include: Autodesk InfraWorks, AutoCAD Civil 3D, AutoCAD Raster Design, Autodesk Navisworks, Autodesk 3ds Max, 3ds max Interactive, Magnet Explorer, Autodesk Viewer
  • Assessment/homework: Active participation in course forums (graded), self-assessment tests (graded), assessments for each BIM cycle (uploaded project files, individual feedback from teacher, design area of 2 km²)

Course starts with a general introduction and introductory lectures. Because course is designed as an e-learning course, most of the work during semester is with peer instruction, where a teacher is giving continuous feedback individually as well as with general forum/video posts to the course participants. Course layout is design so that each main module expects student’s active participation in forum where she/he should ask constructive questions in where some additional explanation is needed. Also they need to answer to their fellow student’s questions. Forum participation is graded against participation constructiveness. Each student should participate to be able to move forward in the course. Each module has its own self-assessment test. Additional contact hours are based on questions/topics where students need more help. Individual assessments are built upon student’s home area data. They start from preliminary design (using tools that enable grab base model data from any location digitally) and master that same data through various BIM cycles to get the general but practical idea about BIM workflows. Based on students continuous activity recordings and feedback, course analytics is carried out. Some statistics is given in the sub-section. In Spring 2019 the course was carried out as a full 16 weeks course in TalTech (previously only in TTK UAS). Statistics is based on those two different groups (total number of registrants: 8 students).

Course learning analytics based on two different study groups (distance learning, full time):

Open university students
Study program students

This course included a major discussion component (graded) in where all students were asked to participate and add at least one constructive question about module’s topic and answer to other, fellow student’s question/comment before they were able to move forward in the course.

What is interesting to note is the fact that approximately 50% of all students are eager, willing or simply saying, – able to ask constructive questions. That is something to worry about, because in the class room we usually see only couple of students who are asking, and assuming that other students simply do not have or are too shy to ask. But we should worry if, based on current studies, they are not able to ask questions at all. This is a real need when students go to work, and are able to ask questions. But if they can’t? Through a compulsory question/answer assessments (50% in that terms is a good number anyway when compared with couple of students from the lecture room) we should be able to get more people involved and help to prepare more students for the real professional work-life. Student feedback can be found from Appendix A.

I have supervised two PhD students to successful completion and currently having one PhD students who plan to defend his thesis in late 2020. My goal during a supervision is to see that student is motivated to work on with a given subject. It is vital that understanding about the problem that she/he tries to solve has clear boundaries and it is supported by the research community. As such a successful problem solving starts from the investigations what has been carried out before, in other words from the state of the art literature review. Once that step is secured, and problem itself that student is trying to focus on, is unique – the process of finding and applying suitable solution methodology starts. In here it is important that student presents her/his findings publicly to develop presentation skills and getting feedback and encouragement that she/he is on right track. During a final stage of studies I see quite problematic that fine tuning of the thesis is less appreciated by the applicant. Somewhat understood but not accepted, because detailing and fine tuning plays important role what differentiates good work from superior piece of work. Therefore a supervisor should pay attention at that final time period very carefully and motivate students to keep going after several small but important revisions/additions. While supervising PhD students, my goal is to make the work internationally visible. Therefore I’m trying to find opponents that do have a great experience in the same topic area and can add value or constructive comments to the work itself.

Academic excellence
Introduction
Raido Puust

Related articles

BIM/INFRABIM workflows @TalTech BIM courses
drones in construction
droneHOW – Drones in construction
“Scan-to-BIM for Infra” (ehk sõidutee…
Mis takistab meil BIM-ist kasu…
Video: Kuidas BIM aitab ellu…
Kuidas hoida inseneeriaga tegelevat ettevõtet…
Kuidas võita rohkem ehitushankeid?
BIM for Infrastructure tööprotsesside tutvustus…
Levinud väärarusaamad BIM-st
BIM algajale – sissejuhatus ehitusinfo…

FlowBIM is Social

  • LinkedIn
  • YouTube
  • Facebook
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use. Privacy & Cookies
Copyright, 2020