Torude läbipesu (WaterGEMS)

Ülesande püstitus

Selles näites analüüsid sa tavapärast (*conventional flushing*) läbipesu metoodikat ning võrdled seda ühesuunalise läbipesu metoodikaga (*unidirectional flushing, UDF*), et parandada läbipesu voolukiiruseid. Analüüsi viid läbi *Bentley WaterGEMS* tarkvaras.

Peale selle näite läbimist oskad sa:

• Üles seadistada läbipesu analüüsi nii tavapärast kui ühesuunalist metoodikat kasutades

Ava fail: TorudeLäbipesu.wtg.

Veendu, et hetke aktiivne stsenaarium on *Steady*. Mudel peaks välja nägema alljärgneva pildi kohane.

- Kliki *Compute* nupul (*Analysis > Compute*), et kontrollida mudeli korrasolekut.
- Sulge dialoog *Calculation Summary* ning *User Notification* dialoogid.

Kontrolli *Pipe* ning *Junction* tabelitest, et arvutustulemused oleksid mõistlikes vahemikes.

Märkus: Võrk omab kahte erinevat survetsooni, ühte (ülemist) teenindab pöörete arvu reguleerimisega pump (mahutita) ning teist (alumist) teenindab konstantse pöörete arvuga pump ning mahuti.

- Vali: View > Symbology.
- Laienda sektsioonis *Pipe*.
- Võta ära linnuke rea Diameter eest ning lisa see nüüd Hydraulic Grade (Start) ette.

Märkus: Ülemine tsoon peaks olema punane ning alumine tsoon sinine (vaata allolevat pilti):

Nüüd lisame veel ühe värvikoodi.

- Vali: View > Element Symbology.
- Parem klikk *Pipe* peal ning vali *New* > *Color Coding*.

Seadista järgmised parameetrid dialoogis Color Coding Properties:

- Field Name: Velocity
- Selection Set: <All Elements>
- Minimum: 0 m/s
- Maximum: 6.1 m/s
- Steps: 5
- Options: Color and Size
- Kliki *Initialize* nupul

	Color Coding Pro	perties	- Pipe		>
Properties		Color M	laps		
Field Name:	Velocity V	Option	IS:	Color an	d Size 🗸 🗸
Selection Set:	<all elements=""> v</all>		< 🖩 🗏 'O		
	Calculate Range		Value <= (m/s)	Color	Size
		0	0.03	192; 192	1
Minimum:	0.00 m/s	1	0.30	128; 255	2
Maximum:	6.10 m/s	2	0.90	0; 128; 2	3
Steps:	5	3	1.50	255; 128	4
		4	6.10	255; 0; C	5
		*			×
		Above Above	Range Color: Range Size:	5	-
	[ОК	Cancel	Apply	<u>H</u> elp

Muuda eelneva pildi järgi ära ka Value, Color ning Size väärtused (vt ka allolevat tabelit):

Value	Color	Size
0.03	Gray	1
0.3	Green	2
0.9	Blue	3
1.5	Magenta	4
6.1	Red	5

• Kliki Apply ning OK.

Järgnevalt seadistame ka hüdrandi värvikoodi, et läbipesus osalev hüdrant paistaks märksa suuremana.

• Dialoogis *Element Symbology* tee parem klikk *Hydrant* peal ning vali *New > Color Coding*.

Määra järgmised parameetrid:

- Field Name: Demand
- Selection Set: <All Elements>
- Minimum: 0 l/s
- Maximum: 126.2 l/s
- Steps: 3
- Options: Color and Size
- Kliki *Initilize* nupul.

Muuda ära väärtused Value, Color ning Size:

Value	Color	Size
3.2	Green	1
31.5	Blue	10
126.2	Red	10

	Color Coding Prop	erties - H	ydrant		×
Properties		Color Ma	ips		
Field Name:	Demand V >	Options	:	Color an	d Size 🗸 🗸
Selection Set:	<all elements=""></all>		C 🔳 🛄)	
	Calculate Range		Value <= (L/s)	Color	Size
Minimum	0.00	0	42.07	0; 255; C	1
Minimum:	0.00	1	84.13	0; 0; 255	10
Maximum:	126.20 L/s	2	126.20	255; 0; C	10
Steps:	3	*			
		Above F Above F	Range Color: Range Size:	3	-
		ОК	Cancel	Apply	<u>H</u> elp

• Kliki *Apply* ning OK.

Täida materjalide lõpus olev tulemuste tabel tavaolukorras.

Läbipesu

Tavapärane läbipesu

Selles analüüsis avad sa kõik hüdrandid ühe kaupa (tavapärane läbipesu).

- Loo kõikide hüdrantide valikugrupp. Riba pealt: Home > *Drawing* > *By Element* > *Hydrant*.
- Tee nüüd parem klikk joonise alas ning vali Create Selection Set.
- Nimeta see valik kui *All Hydrants*.

Create Selection Set						
New selection All Hydrants	set name					
	ОК	Cancel	Help			

- Kliki OK.
- Kui soovid mingil hetkel uuesti vaadata valikugruppi, siis võid kasutada näiteks: *View* > *Navigator*.
- Dialoogis Network Navigator kliki hüpikmenüül ning vali All Hydrants valikugrupp.

	Network Na	vigator		×
<current selection=""></current>				v > >
<current selection=""> All Hydrants</current>				D% 🗸
Label		ID	Туре	

• Sulge dialoog Network Navigator.

Arvutusseaded läbipesu analüüsi läbiviimiseks

- Vali: Analysis > Options.
- Vali Steady State/EPS Solver ning kliki New nupul.
- Nimeta uus arvutusseade kui *FlushingCalc*.

Calculation Options							
🗋 🗙 🛱 🛋 🛛 😮							
Base							
EPS							
- Transient Solver							
Base							

• Tee topelt-klikk *FlushingCalc* peal ning *Properties* aknas vali *Calculation Type* = *Flushing*.

Pr	operties - Calculation Opti	ons - FlushingCalc (1955) 🛛 🕂 🗙
H	114	v 🔍 😢 100% v
<sh< th=""><th>iow All></th><th>v 📑</th></sh<>	iow All>	v 📑
Pro	perty Search	، ۹
⊿	<general></general>	
	ID	1955
	Label	FlushingCalc
	Notes	
	Friction Method	Hazen-Williams
	Output Selection Set	<all></all>
	Calculation Type	Flushing 🗸 🗸
⊿	Adjustments	
	Demand Adjustments	None
	Unit Demand Adjustments	None
	Roughness Adjustments	None

• Sulge vajadusel *Calculation Options* dialoog.

Uue stsenaariumi loomine

- Ava stsenaariumite dialoog: Analysis > Scenarios.
- Kliki Steady stsenaariumi peal.
- Kliki New nupul ning vali Child Scenario.
- Nimeta uus stsenaarium kui Flush-Conv.

• Ava Flush-Conv stsenaarium ning vali Steady State/EPS Solver Calculation Options = Flushing Calc.

Show All> operty Search • <general> ID Label Notes Alternatives Active Topology Physical Demand Initial Settings</general>	I 1956 Flush-Conv <1> 1235: UNIT 1 <1> 24: Base-Physical
operty Search General> ID Label Notes Alternatives Active Topology Physical Demand Initial Settings	P 1956 Flush-Conv
General> ID Label Notes Alternatives Active Topology Physical Demand Initial Settings	1956 Flush-Conv <l> 1235: UNIT 1 <l> 24: Base-Physical</l></l>
ID Label Notes Alternatives Active Topology Physical Demand Initial Settings	1956 Flush-Conv <l> 1235: UNIT 1 <l> 24: Base-Physical</l></l>
Label Notes Alternatives Active Topology Physical Demand Initial Settings	Flush-Conv <i> 1235: UNIT 1 <i> 24: Base-Physical</i></i>
Notes Alternatives Active Topology Physical Demand Initial Settings	<l> 1235: UNIT 1 <l> 24: Base-Physical</l></l>
Alternatives Active Topology Physical Demand Initial Settings	<l> 1235: UNIT 1 <l> 24: Base-Physical</l></l>
Active Topology Physical Demand Initial Settings	<l> 1235: UNIT 1 <l> 24: Base-Physical</l></l>
Physical Demand Initial Settings	<l> 24: Base-Physical</l>
Demand Initial Settings	
Initial Settings	<l> 27: Base-Demand</l>
	<l> 1237: Normal</l>
Operational	<l> 1251: Normal</l>
Age	<l> 34: Base-Age Alternative</l>
Constituent	<l> 35: Base-Constituent</l>
Trace	<l> 36: Base-Trace Alternative</l>
Fire Flow	<l> 37: Base-Fire Flow</l>
Energy Cost	<l> 40: Base-Energy Cost</l>
Transient	<l> 1294: Base HAMMER</l>
Pressure Dependent Demar	nd <l> 41: Base Pressure Dependent Der</l>
Failure History	<l> 1949: Base Failure History</l>
SCADA	<l> 1953: Base SCADA</l>
User Data Extensions	<l> 42: Base-User Data</l>
Calculation Options	
Steady State/EPS Solver Ca	lc 1955: FlushingCalc

Läbipesu defineerimine

- Vali: Analysis > Analysis Tools > Flushing.
- Laienda sektsiooni Flushing Study ning kliki Base Flushing.

Sisesta järgmised parameetrid:

- Target Velocity: 0.91 m/s
- Pipe Set: All Pipes

Märkus: See tähendab, et voolukiirust kontrollitakse kõikide süsteemi torude juures.

- Flowing Emitter Coefficient: 12.04 l/s//mH20)^n
- Flowing Demand: 0 l/s
- Apply Flushing Flow By: Adding to baseline demand
- Include nodes with pressure less than?: Vali kastike ning sisesta: 206.8 kPa
- Ära vali *Include pipes with velocity greater than?*, kuna sa olid eelnevalt valinud torugrupina kõik torud (*All Pipes*).

률 = F	Flushing (TorudeLäbipesuFinished.wtg) – 🗖 🗖					
🗋 • 🗙 =ĩ 🕼 🔁 • 🗎 • 🍳 🖉 🕼 🊱	Options Events Notes					
Flushing Study	Representative Scenario:					
	Output Scenario:					
	Target Velocity: 0.91 m/s					
	Target Shear Stress: 0.00 Ibs/ft ²					
	Safety Factor (Flushing Time, Volume): 1.000					
	Pipe Set: 					
	Nodes of Interest: 					
	Boundary Valves: <a>Collection: 0 items>					
	Hushing Hows Elowing Emitter Coefficient: 12.040 L/s/(m.H20)^n					
	Flowing Demand: 0.00 L/s					
	Apply Flushing Flow By: Adding to baseline demand					
	Auxiliary Output					
	✓ Include nodes with pressure less than? ZUb.8 KPa					
	Include pipes with velocity greater than?					
≈ ≈ ≣	ř•					

- Vali uuesti Base Flushing. Parem klikk: Add > New Conventional Events (Batch)
- Kliki Query > All Hydrants.
- Seejärel kliki Done.

4	Flush	ing (TorudeLäbipesuFinished.w	tg) – 🗆 🗙
🗋 • 🗙 🛋 🛱 🔁 • 🗎 • 🔍 🧷 🧷 🐺	0	Options Events Notes	
	^	Representative Scenario:	Rush-Conv V
⊕∰ Event [H-3] ⊕∰ Event [H-4] ⊕∰ Event [H-6]			
⊕∰ Event [H-7] ⊕∰ Event [H-8] ⊕∰ Event [H-9]		Target Velocity: Target Shear Stress:	0.00 lbs/ft ²
		Safety Factor (Flushing Time, Volume Pipe Set:	e): 1.000 Collection: 364 items>
Event [H-17] Event [H-18] Event [H-19] Event [H-19] Event [H-19]		Nodes of Interest: Boundary Valves:	<collection: 0="" items=""></collection:>
e — event (H-21) e – e Event (H-21) e – e Event (H-22) e – e Event (H-23)		Flushing Flows Flowing Emitter Coefficient:	12.040//s/(m H2O)^n
 ⊕ Event [H-24] ⊕ Event [H-25] ⊕ Event [H-26] ⊕ Event [H-27] 		or Flowing Demand:	0.00 U/s
⊕ — ∰ Event [H-28] ⊕ – ∰ Event [H-30] ⊕ – ∰ Event [H-32]		Apply Flushing Flow By:	Adding to baseline demand V
		Include nodes with pressure less that	an? 206.8 kPa
⊕∰ Event [H-36] ⊕∰ Event [H-37] ⊕∰ Event [H-38]	~	include pipes with velocity greater th	nan / u.uu mvs
* *			

Märkus: Järgnevalt määrad sa läbipesu alternatiivis, et hüdrant *H-91* kasutab 100mm läbimõõduga väljavooluava.

- Vali vasakust servast Base Flushing > Event [H-91]
- Paremast sektsioonist vali kastike *Specify Local Flows*? ning sisesta *Emitter Coefficient* = 30.1 L/s/(mH20)^n.

• Arvuta läbipesu stsenaarium. Võid seda teha siit samast dialoogist, klikkides nupul *Compute* (pane tähele, et saad arvutada ühte valitud sündmust või kõiki hüdrante korraga). Arvuta kõik sündmused korraga.

Tulemuste vaatamine

• Vali dialoogis olles: *Compute > Show Flushing Area Table*.

 Avanevas tabelis, parem klikk veeru Velocity (Maximum Flushing) päisel, vali Sort > Sort Descending.

Pipe FlexTal	ble: Flushing Re	eport (Current 1	lime: 0.000 hour	s) (TorudeLäbi	pesu.wtg)			1	
🛡 🖻 🕻	\$ 🗹 🔎	-	⊒ - " ⊳ -						
	ID	Label	Length (m)	Diameter (mm)	Flushing Event	Velocity Maximum Achieved (m/s)	Satisfies Flushing Velocity?		A H
1084: P-294	1084	P-294	24	150.0	1960: Flushi	4.24	 Image: A start of the start of		
854: P-346	854	P-346	21	150.0	1995: Flushi	4.19	~		
657: P-3	657	P-3	208	100.0	1952: Flushi	4.10	V		
1300: P-727	1300	P-727	21	100.0	1952: Flushi	4.07			
863: P-361	863	P-361	36	150.0	2003: Flushi	3.94			
941: P-450	941	P-450	106	150.0	2019: Flushi	3.91			
1072: P-288	1072	P-288	53	150.0	1966: Flushi	3.87			
938: P-447	938	P-447	110	150.0	2018: Flushi	3.74			
947: P-457	947	P-457	21	150.0	2022: Flushi	3.62			
943: P-452	943	P-452	66	150.0	2021: Flushi	3.57			
853: P-345	853	P-345	102	150.0	1994: Flushi	3.55			
1075: P-600	1075	P-600	23	150.0	1994: Flushi	3.51			
1311: P-730	1311	P-730	24	150.0	1959: Flushi	3.47			
723: P-170	723	P-170	21	150.0	2020: Flushi	3.28	Z		
858: P-352	858	P-352	21	150.0	1998: Flushi	3.26	Z		
673: P-62	673	P-62	21	150.0	1956: Flushi	3.13	Z		
690: P-103	690	P-103	159	150.0	1999: Flushi	3.11	~		
855: P-350	855	P-350	22	150.0	1999: Flushi	3.09			
1107: P-645	1107	P-645	40	150.0	2002: Flushi	3.09	Image: A start of the start		
849: P-341	849	P-341	283	150.0	1993: Flushi	3.07	Image: A state of the state		
850: P-342	850	P-342	313	150.0	1993: Flushi	3.07	Image: A start of the start		
725: P-172	725	P-172	21	150.0	2023: Flushi	3.06	V		-
					and et 11		-		· · ·
364 of 364 eleme	nts displayed								SORTED

Täida materjali lõpus olev tulemuste tabel.

Pane tähele järgmist:

- *P-675* nimetatud torus on voolukiirus 0, kuna tegemist on tsoone eraldava toruga, mis on suletud.
- *P-665* nimetatud torus on voolukiirus 0, kuna see on tupiktoru, mille teises otsas pole hüdranti.
- *TL-107* nimetatud torus on voolukiirus marginaalne, sest tegemist on suure läbimõõduga, mis saab oma vooluhulga mõlemast otsast.
- *P-455* omab head voolukiirust.
- *P-294* omab väga suurt voolukiirust, kuna tegemist on tupiktoruga.

Sulge *FlexTable* dialoog.

Lisa uus värvikood

- Riba pealt: *View > Symbology*.
- Parem klikk *Pipe* peal ning vali *New > Color Coding*.

Määra järgmised parameetrid:

- Field Name: Velocity (Maximum Flushing)
- Selection Set: <All Elements>
- Minimum: 0 m/s
- Maximum: 6.1 m/s
- Steps: 5
- Options: Color and Size
- Kliki *Initilize* nupul.

Muuda ära väärtused Value, Color ning Size:

Value	Color	Size
0.03	Gray	1
0.3	Green	3
0.9	Blue	5
1.5	Magenta	7
6.1	Red	9

• Sisesta Above Range Size = 9.

	Color Coding Pro	perties -	Pipe			×
Properties		Color Ma	aps			
Field Name:	Velocity (Maximum Flushing V	Options	s:	Color an	d Size	~
Selection Set:	<all elements=""> V</all>		c 🔳 🔳 🌶			
	Calculate Range		Value <= (m/s)	Color	Size	^
10 C	0.00	0	1.22	192; 192	1	
Minimum:	0.00 m/s	1	2.44	0; 255; 1	3	
Maximum:	6.10 m/s	2	3.66	0; 0; 255	5	
Steps:	5	3	4.88	255; 0; 2	7	<u></u>
		4	6.10	255; 0; C	9	
		*				×
		Above Above	Range Color: Range Size:	9		-
		ОК	Cancel	Apply	He	lp

- Kliki *Apply* ning OK.
- Vali nüüd Element Symbology dialoogis ainult rida Velocity (Maximum Flushing).

Vaata joonist.

Ära unusta tööfaili aeg-ajalt salvestada.

• Vali: Analysis > Flushing Results Browser.

Flushing Event	Flushing Type	Pipe Length Met Target	Cumulative Pipe Length Met Target	Incremental Pipe Length Met Target	Minimum Pressure Node	Minimum Pressure	Time (Minimum Flushing)	Time (Recommende Flushina)
		(m)	(m)	(m)		(kPa)	(min)	(min)
Event [H-2]	Conventional	1 510	1 510	1 510	(N/A)	(N/A)	0.000	0.0
Event [H-3]	Conventional	1 109	1 761	251	(N/A)	(N/A)	0.000	0.0
Event [H-4]	Conventional	534	2 296	534	(N/A)	(N/A)	0.000	0.0
Event [H-6]	Conventional	232	2 296	0	(N/A)	(N/A)	0.000	0.0
Event [H-7]	Conventional	697	2 790	495	(N/A)	(N/A)	0.000	0.0
Event [H-8]	Conventional	21	2 790	0	(N/A)	(N/A)	0.000	0.0
Event [H-9]	Conventional	207	2 997	207	(N/A)	(N/A)	0.000	0.0
Event [H-10]	Conventional	22	3 0 1 9	22	(N/A)	(N/A)	0.000	0.0
Event [H-11]	Conventional	24	3 043	24	(N/A)	(N/A)	0.000	0.0
Event [H-16]	Conventional	24	3 067	24	(N/A)	(N/A)	0.000	0.0
Event [H-17]	Conventional	471	3 538	471	(N/A)	(N/A)	0.000	0.0
Event [H-18]	Conventional	0	3 538	0	(N/A)	(N/A)	0.000	0.0
Event [H-19]	Conventional	549	4 086	549	(N/A)	(N/A)	0.000	0.0
Event [H-20]	Conventional	2 439	6 319	2 232	(N/A)	(N/A)	0.000	0.0
Event [H-21]	Conventional	1 384	6 342	23	(N/A)	(N/A)	0.000	0.0
Event [H-22]	Conventional	2 492	6 395	53	(N/A)	(N/A)	0.000	0.0
Event [H-23]	Conventional	21	6 395	0	(N/A)	(N/A)	0.000	0.0
Event [H-24]	Conventional	941	6 802	407	(N/A)	(N/A)	0.000	0.0
Event [H-25]	Conventional	0	6 802	0	(N/A)	(N/A)	0.000	0.0

- Nüüd tee vahetus, vali *Element Symbology* aknas *Velocity* ning võta linnuke ära *Velocity* (*Maximum Flushing*) eest.
- Veendu, et Hydrant sektsioonis on valitud Demand (Element Symbology dialoogis)

- Kuna *Flushing Results Browser* on avatud, siis kliki erinevatel läbipesu sündmustel, et uurida, millised torud omavad suuri voolukiiruseid mingil kindlal läbipesul.
- Näiteks, alljärgnev pilt kuvab hüdrandi *H-42*, mis peseb toru *TL-107*.

2		Elushing Type	Pipe Length Met	Cumulative Pipe Length Met	Incremental Pipe Length Met	^
	Hushing Event	Hushing Type	(m)	Target (m)	Target (m)	
	Event [H-35]	Conventional	900	11 102	104	
	Event [H-36]	Conventional	226	11 328	226	
	Event [H-37]	Conventional	383	11 328	0	
	Event [H-38]	Conventional	0	11 328	0)
	Event [H-39]	Conventional	0	11 328	0	
	Event [H-40]	Conventional	289	11 440	113	
	Event [H-41]	Conventional	24	11 440	0	
	Event [H-42]	Conventional	0	11 440	0	
	Event [H-43]	Conventional	0	11 440	0)
	Event [H-44]	Conventional	248	11 689	248)
	Event [H-45]	Conventional	0	11 689	0)
	Event [H-46]	Conventional	0	11 689	0)
	Event [H-47]	Conventional	586	11 689	0	· ~
۲ ()					2	

Märkus: Voolukiirused pole väga kõrged (nt torus TL-107 ca 0.7 m/s).

- Kliki Close.
- Nägemaks rõhkusid mistahes sündmuse lõikes, ava tabel FlexTable: Junction.
- Parem klikk veeru *Pressure* päisel ning vali *Sort > Sort Descending*.

• Enamus sõlmi kuvab väärtusena N/A, kuna nendes sõlmedes ei kukkunud rõhk alla 206.8 kPa.

Meenuta, et sa sisestasid väärtuse Include nodes with pressure less than? = 206.8 kPa.

FlexTable: Junction Table (Current Time: 0.000 hours) (TorudeLäbipesuFinished.wtg) _ 🗆 🗙 Emitter Coefficient ~ Hydraulic Grade (m) Elevation (m) Demand Collection Demand (L/s) Pressure ID Label Zone (L/s/(m H2O)^n) (kPa) 326: J-161 326 J-161 354.8 147: Zone <Collection: 0.58 375.6 203.8 0.000 244: 3-181 244]-181 360.9 147: Zone <Collection: 0.69 381.7 203.3 0.000 312: J-41 312 J-41 354.5 147: Zone <Collection: 0.11 374.9 199.8 0.000 191: J-172 191 J-172 355.7 147: Zone 0.34 376.1 199.7 0.000 <Collection: 353.9 147: Zone 373.5 546: J-215 546 J-215 <Collection: 0.00 192.4 0.000 155: J-156 155 J-156 355.7 147: Zone <Collection: 0.45 375.1 189.7 0.000 195: J-58 195 J-58 355.7 147: Zone <Collection: 0.13 374.8 186.8 0.000 <Collection: 223: J-66 223 J-66 355.7 147: Zone 0.13 374.8 186.8 0.000 269: J-183 356.9 147: Zone 374.9 176.1 0.000 269 J-183 <Collection: 0.21 158: J-70 158 J-70 356.0 147: Zone <Collection: 0.32 373.5 171.2 0.000 292: J-101 292 J-101 357.5 147: Zone <Collection: 0.13 374.8 168.9 0.000 560: J-221 560 J-221 358.4 147: Zone <Collection: 0.26 374.8 160.0 0.000 275: 1-69 275 1-69 358.4 147: Zone <Collection: 0.16 373.5 147.3 0.000 427: FH-85 427 FH-85 358.7 147: Zone <Collection: 0.00 373.5 144.3 0.000 133.1 0.000 254: J-48 254 J-48 361.2 147: Zone <Collection: 0.29 374.8 0.000 608: J-267 608 J-267 374.6 148: ZONE X <Collection: 0.00 381.7 69.2 590: J-252 590 J-252 378.0 148: ZONE X <Collection: 0.00 38.8 0.000 381.9 588: J-250 588 J-250 328.0 148: ZONE X 0.00 327.9 -0.2 0.000 <Collection: 150: J-36 150 J-36 362.4 147: Zone <Collection: (N/A) (N/A) (N/A) 0.000 153: J-190 153 J-190 329.5 147: Zone <Collection: (N/A) (N/A) (N/A) 0.000 154: J-62 <Collection: 0.000 154 J-62 338.6 147: Zone (N/A) (N/A) (N/A) ~ 220 of 220 elements displayed SORTED

Märkus: Sõlmed, mis kogevad rõhku vähem kui 206.8 kPa, on enamjaolt pumplate imipoolel.

• Sulge Junction FlexTable.

Jätka teiste läbipesu sündmuste valimist, et uurida, kui efektiivne iga sündmus on.

Näiteks sündmus *Flushing H-16* ei pese läbi just väga suurt torude piirkonda, kuna see asub väga lähedal süsteemi allikale.

Samas sündmus *Flushing H-91* peseb läbi üsna suure sektsiooni, seda just asukohast lähtuvalt ning ka asjaolust, et ava sai siin määratud kui *100mm*.

• Sulge Flushing Results Browser.

Ühesuunaline läbipesu

Toru *TL-107* ei kogenud suuri voolukiiruseid, olenemata sellest, et see asub väga lähedal allikale. Tegemist on suure läbimõõdulise toruga ning see saab vooluhulga mõlemast otsast. Sa seadistad üles nüüd ühesuunalise sündmuse, mis püüab sundida voolamist vaid ühesuunaliselt.

Suurenda elemendi TL-107 juurde.

Märkus: Kuna sa soovid vooluhulka tagada mahuti kaudu, siis pole pumba töögraafik ebapiisavus siin oluline.

Toru allavoolu otstes on siibrid ISO-85 ning ISO-212.

Uue stsenaariumi loomine

- Vali menüüst Analysis > Scenarios.
- Loo uus alam-stsenaarium Flush-Conv alla.
- Nimeta uus stsenaarium kui Flush UDF-107.
- Tee stsenaarium *Flush UDF-107* aktiivseks stsenaariumiks.

Ühesuunalise läbipesu defineerimine

- Ava: Analysis > Flushing.
- Parem klikk Flushing Study peal ning vali: Add > New Area.
- Nimeta see kui UDF-107.

- Muuda: Representative Scenario = Flush UDF-107
- Veendu, et parameetrid UDF-107 osas oleksid samad, mis ka eelnevas arvutuses.

Samas lisad sa *Boundary Valves* sektsioonis eelnimetatud siibrid, mille sulgemise eesmärk on parandada läbipesus vooluhulka torus *TL-107*.

- Kliki Boundary Valves real lõous oleval nupul (...).
- Dialoogis Boundary Valves kliki nupul Select From Drawing.
- Kasutades nt *Find* nuppu leia elemendid *ISO-85, ISO-212* ja lisa need eelnevasse tabelisse.

Boundary Valves						
Element	s to Close Report Views					
×D ×	Remove All					
	Label	Element ID	Notes			
1	ISO-85	1375				
2	ISO-212	1945				
			OK Cancel	Help		

- Kliki OK.
- Tee parem klikk UDF-107 peal ning vali Add > New Unidirectional Event
- Kuvatakse paan Select, esmalt on valitud nupuke *Add Pipe Run* Elements. Vali toru nimetusega *TL*-107. See tõstetakse esile.
- Kliki nüüd Select > Add Operational Elements
- Vali hüdrant *HL-42*.

- Kliki Done, et lõpetada elementide valik ja naasta dialoogi Flushing.
- Nimeta see sündmus kui *TL-107*.

₽	Flushing (TorudeLäbipesuFinished.wtg) – 🗆 🗙								
	Event I	Elements: TL-107 Notes							
Bushing Study Grad Base Fushing									
UDF-107	*D 🗡	< Comparison of the second sec							
□107 		Element Label	Element Type	Status	Specify Local Flows?	Emitter Coefficient (L/s/(m H2O)^n)	Flow (L/s)	Notes	
Report Views	1	816: TL-107	Pipe	Pipe Run		(N/A)	(N/A)		
Trepoit views	2	1430: H-42	Hydrant	Flushing		12.040	0.00		
	3	1375: ISO-85	Isolation Valve	Closed (prior)		(N/A)	(N/A)		
	4	1945: ISO-212	Isolation Valve	Closed (prior)		(N/A)	(N/A)		

Märkus: Pane tähele, et kui valid sündmuse, siis parempoolne tabel kuvab selles osalevaid elemente.

- Salvesta oma fail.
- Käivita arvutus Flushing dialoogi vahendusel (Compute)

Vaata tulemusi

• Flushing dialoogis vali: Show Flushing Area Table.

Märkus: Voolukiirus torus *TL-107* ei kasvanud märgatavalt, osalt seetõttu, et see on üsna kaugel allikast ning osalt ka seetõttu, et tegemist on 300mm toruga.

Tulemused

	Toru	Velocity (Normal) (m/s)	Maximum velocity (m/s)
			(Flushing Report)
	P-675		
	P-665		
	P-455		
	P-294		
Läbipesu	TL-107 (tavaline)		
Läbipesu	TL-107 (UDF)		

Stsenaarium Steady (tavaolukord)

Tsoon	Pump	HGL (m) (survepoolel)
Upper	PMP-12	
Lower	PMP-1	

Näite küsimused

- 1) Mida oleks võinud veel ette võtta, et parandada läbipesu?
- 2) Miks toru P-103 voolukiirus muutus nii palju kui võrrelda tavaolukorda ning läbipesu sündmust?
- 3) Mida teha, et läbi pesta lühikesi tupiktorusid, kus puuduvad hüdrandid?
- 4) Kas ühesuunaline läbipesu on mõttekas toru TL-107 juures? Miks?

5) Toru P-294 läbipesemisel on voolukiirus väga suur. Millise hoiatuse annaksid sa operaatorile, mis kehtiks just sellele torule?

Tulemused

	Toru	Velocity (Normal) (m/s)	Maximum velocity (m/s)
			(Flushing Report)
	P-675	0.0	0.0
	P-665	0.0	0.0
	P-455	0.02	1.66
	P-294	0.01	4.24
Läbipesu	TL-107 (tavaline)	0.01	0.72
Läbipesu	TL-107 (UDF)	0.01	0.8

Stsenaarium Steady (tavaolukord)

Tsoon	Pump	HGL (m) (survepoolel)
Upper	PMP-12	435.9
Lower	PMP-1	382.1

Näite küsimused

1) Mida oleks võinud veel ette võtta, et parandada läbipesu?

Lülita sisse hetkel väljas olevad pumbad.

2) Miks toru P-103 voolukiirus muutus nii palju kui võrrelda tavaolukorda ning läbipesu sündmust?

Tegemist oli tupiktoruga, kus puudu tavaolukorras tarbimine.

3) Mida teha, et läbi pesta lühikesi tupiktorusid, kus puuduvad hüdrandid?

Installeeri spetsiaalsed elemendid tupiktoru otsa (blow off valve)

4) Kas ühesuunaline läbipesu on mõttekas toru TL-107 juures? Miks?

See oleks olnud justkui oodatav tulemus aga tegelikult oli kasu vähe. Seda asjaolul, et suletud torud siiski ei toonud normolukorras piisavalt vooluhulka hüdranti. Lisaks on toru läbimõõt ka 300mm, mida ongi keerukas läbi pesta. Eriti veel juhtudel kui see asub allikast väga kaugel ning survekaod allika ning väljavooluhüdrandi vahel on suured.

5) Toru P-294 läbipesemisel on voolukiirus väga suur. Millise hoiatuse annaksid sa operaatorile, mis kehtiks just sellele torule?

Tupiktorude otstes olevaid hüdrante tuleks väga ettevaatlikult avada/sulgeda, et vähendada hüdraulilise löögi ohtu.